Open Access

Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism

  • Astrid Gärdes
  • , Eva Kaeppel
  • , Aamir Shehzad
  • , Shalin Seebah
  • , Hanno Teeling
  • , Pablo Yarza
  • , Frank Oliver Glöckner
  • , Hans-Peter Grossart
  • and Matthias S. Ullrich
Corresponding author

DOI: 10.4056/sigs.922139

Received: 28 September 2010

Published: 31 October 2010

Abstract

Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special interest for research on marine aggregate formation because it showed specific attachment to diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-negative gammaproteobacterium, which was originally isolated from marine particles sampled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various media, is easy to access genetically, and serves as a model organism to investigate the cellular and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the complete and annotated genome sequence of M. adhaerens HP15 as well as some details on flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three rRNA operons, while the two circular plasmids are ~187 kb and ~42 kb in size and contain 178 and 52 protein-coding genes, respectively.

Keywords:

marine heterotrophic bacteriadiatomsattachmentmarine aggregate formation

Introduction

Strain HP15 (DSM 23420) is the type strain of the newly established species Marinobacter adhaerens sp. nov. and represents one of 27 species currently assigned to the genus Marinobacter [1]. Strain HP15 was first described by Grossart et al. in 2004 [2] as a marine particle-associated, Gram-negative, gammaproteobacterium isolated from the German Wadden Sea. The organism is of interest because of its capability to specifically attach in vitro to the surface of the diatom Thalassiosira weissflogii-inducing exopolymer and aggregate formation and thus generating marine snow particles [3]. Marine snow formation is an important process of the biological pump, by which atmospheric carbon dioxide is taken up, recycled, and partly exported to the sediments. This sink of organic carbon plays a major role for marine biogeochemical cycles [4]. Several studies reported on the formation and properties of marine aggregates [5-8]. Although it was shown that heterotrophic bacteria control the development and aggregation of marine phytoplankton [3], specific functions of individual bacterial species on diatom aggregation have not been explored thus far.

A better understanding of the molecular basis of bacteria-diatom interactions that lead to marine snow formation is currently gained by establishing a bilateral model system, for which M. adhaerens sp. nov. HP15 serves as the bacterial partner of the easy-to-culture diatom, T. weissflogii [3]. Herein, we present a set of features for M. adhaerens sp. nov. HP15 (Table 1) together with its annotated complete genomic sequence, and a detailed analysis of its flagella-associated genes.

Table 1

Classification and general features of M. adhaerens sp. nov. HP15 according to the MIGS recommendations [9]

MIGS ID

  Property

   Term

   Evidence code

   Domain Bacteria

   TAS [10]

   Phylum Proteobacteria

   TAS [11]

   Class Gammaproteobacteria

   TAS [12,13]

  Current classification

   Order Alteromonadales

   TAS [12,14]

   Family Alteromonadaceae

   TAS [15-17]

   Genus Marinobacter

   TAS [1,18]

   Species Marinobacter adhaerens

   TAS [1]

   Type strain HP15

   TAS [1]

  Gram stain

   negative

   IDA

  Cell shape

   rod-shaped

   IDA

  Motility

   motile, single polar flagellum

   IDA

  Sporulation

   non-sporulating

   NAS

  Temperature range

   mesophilic

   IDA

  Optimum temperature

   34-38°C

   IDA

  Salinity

   0.4-10 g NaCl/l (optimum/growth within 1 day)

   IDA

MIGS-22

  Oxygen requirement

   strictly aerobic

   IDA

  Carbon source

   dextrin, Tween 40 and 80, pyruvic acid methyl ester,   succinic acid mono-methyl-ester, cis-aconitic acid,   β-hydroxybutyric acid, γ-hydroxybutyric acid,   α-keto glutaric acid, α-keto valeric acid, D,L-lactic acid,   bromosuccinic acid, L-alaninamide, D-alanine,   L-alanine, L-glutamic acid, L-leucine and L-proline

   IDA

  Energy source

   chemoorganoheterotrophic

   IDA

MIGS-6

  Habitat

   sea water

   IDA

MIGS-15

  Biotic relationship

   free-living and particle-associated

   TAS [2]

MIGS-13

  Culture deposition no.

   DSM 23420

   IDA

MIGS-14

  Pathogenicity

   none

   NAS

  Biosafety level

   1

   NAS

  Isolation

   marine aggregates (0.1-1 mm)

   TAS [2]

MIGS-4

  Geographic location

   German Wadden Sea

   TAS [2]

MIGS-4.1

  Latitude

   53°43’20’’N

   TAS [2]

MIGS-4.2

  Longitude

   07°43’20’’E

   TAS [2]

MIGS-4.3

  Depth

   surface waters

   TAS [2]

MIGS-4.4

  Altitude

   sea level

   TAS [2]

MIGS-5

  Sample collection time

   15 June 2000

   TAS [2]

Evidence codes – IDA: inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property of the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [19]. If evidence code is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.

Classification and features

M. adhaerens sp. nov. strain HP15 is a motile, Gram-negative, non-spore-forming rod (Figure 1). Based on its 16S rRNA sequence, strain HP15 was assigned to the Marinobacter genus of Gammaproteobacteria. Two other Marinobacter species were identified based on their interactions with eukaryotes - M. algicola isolated from dinoflagellate cultures [20] and M. bryozoorum derived from Bryozoa [21]. The 16S rRNA gene of strain HP15 is most closely related to those of the type strains of M. flavimaris (99%), M. salsuginis (98%) and M. algicola (96%). These four type strains form a discrete cluster in the phylogenetic tree (Figure 2). In contrast, DNA-DNA hybridization experiments revealed that the genome of M. adhaerens sp. nov. HP15 showed about 64% binding to that of M. flavimaris [1], which is below the generally accepted species differentiation limit of 70% [25].

Figure 1

Transmission electron micrograph of M. adhaerens sp. nov. strain HP15.

Figure 2

Maximum likelihood phylogenetic tree based on 16S rRNA sequences of M. adhaerens type strain (HP15) plus all type strains of the genus Marinobacter and the type species of the neighbor order Pseudomonadales. Sequence selection and alignment improvements were carried out using the Living Tree Project database [22] and the ARB software package [23]. The tree was inferred from 1,531 alignment positions using RAxML [24] with GTRGAMMA model. Support values from 1,000 bootstrap replicates are displayed above branches if larger than 50%. The scale bar indicates substitutions per site.

Chemotaxonomy

Strain HP15 can grow in artificial sea water with a nitrogen-to-phosphorus ratio of 15:1 supplemented with glucose as the sole carbon source. In presence of diatom cells but without glucose, HP15 utilized diatom-produced carbohydrates as sole source of carbon. Furthermore, M. adhaerens sp. nov. HP15 differed from M. flavimaris and other Marinobacter species in a number of chemotaxonomic properties, such as utilization of glycerol, fructose, lactic acid, gluconate, alanine, and glutamate [1]. Additionally, strain HP15 showed a unique fatty acid composition pattern.

Genome sequencing and annotation

Genome project history

M. adhaerens HP15 was selected for sequencing because of its phylogenetic position, its particular feature as a diatom-interacting marine organism [3], and its feasible genetic accessibility to act as a model organism. The respective genome project is deposited in the Genome OnLine Database [19] and the complete genome sequence in GenBank. The main project information is summarized in Table 2.

Table 2

Genome sequencing project information for M. adhaerens sp. nov. HP15

MIGS ID

  Property

   Term

MIGS-31

  Finishing quality

   Finished

MIGS-28

  Library used

   454 pyrosequencing standard library

MIGS-29

  Sequencing platforms

   454 FLX Ti

MIGS-31.2

  Sequencing coverage

   22.5× pyrosequencing

MIGS-30

  Assemblers

   Newbler version 2.0.00.22

MIGS-32

  Gene calling method

   GLIMMER v3.02, tRNAScan-SE

   CP001978 (chromosome)

  Genbank ID

   CP001979 (pHP-42)

   CP001980 (pHP-187)

  Genbank Date of Release

   September 18, 2010

  GOLD ID

   Gi06214

  NCBI project ID

   46089

  Database: IMG

   pending

  Project relevance

   Marine diatom-bacteria interactions

Growth conditions and DNA isolation

M. adhaerens sp. nov. HP15 was grown in 100 ml Marine Broth medium [26] at 28°C. A total of 23 µg DNA was isolated from the cell paste using a Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

Genome sequencing and assembly

The Marinobacter adhaerens sp. nov. HP15 genome was sequenced at AGOWA (AGOWA GmbH, Berlin, Germany) using the 454 FLX Ti platform of 454 Life Sciences (Branford, CT, USA). The sequencing library was prepared according to the 454 instructions from genomic M. adhaerens sp. nov. HP15 DNA with a final concentration of 153 ng/µl. Sequencing was carried out on a quarter of a 454 picotiterplate, yielding 258.645 reads with an average length of 405 bp, totaling to almost 105 Mb. These reads were assembled using the Newbler assembler version 2.0.00.22 (Roche), resulting in 253.285 fully and 4.763 partially assembled reads, leaving 932 singletons, 226 repeats and 371 outliers. The assembly comprised 112 contigs, with 40 exceeding 500 bp. The latter comprised more than 4.6 Mb, with an average contig size of almost 116 kb and a longest contig of more than 1.2 Mb. Gaps between contigs were closed in a conventional PCR-based gap closure approach, resulting in a fully closed circular chromosome of 4.421.911 bp, and two plasmids of 187.465 bp and 42.349 bp, respectively. Together all sequences provided 22.5× coverage of the genome. The error rate of the completed genome sequence is about 3 in 1,000 (99.7%).

Genome annotation

Potential protein-coding genes were identified using GLIMMER v3.02 [27], transfer RNA genes were identified using tRNAScan-SE [28] and ribosomal RNA genes were identified via BLAST searches [29] against public nucleotide databases. The annotation of the genome sequence was performed with the GenDB v2.2.1 system [30]. For each predicted gene, similarity searches were performed against public sequence databases (nr, SwissProt, KEGG) and protein family databases (Pfam, InterPro, COG). Signal peptides were predicted with SignalP v3.0 [31,32] and transmembrane helices with TMHMM v2.0 [33]. Based on these observations, annotations were derived in an automated fashion using a fuzzy logic-based approach [34]. Finally, the predictions were manually checked with respect to missing genes in intergenic regions and putative sequencing errors, and the annotations were manually curated using the Artemis 11.3.2 program and refined for each putative gene [35].

Genome properties

The genome of strain HP15 comprises three circular replicons: the 4,422,725 bp chromosome and two plasmids of ~187 kb and ~42 kb, respectively (Table 3A and Figure 3). The genome possesses a 56.9% GC content (Table 3B). Of the 4,482 predicted genes, 4,422 were protein coding genes, and 60 RNAs; 391 pseudogenes were also identified. The majority of the protein-coding genes (67.5%) were assigned with a putative function, while those remaining were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3A

Genome composition for M. adhaerens HP15

Label

  Size (Mb)

   Topology

  RefSeq ID

Chromosome§

  4.423

   circular

  CP001978

Plasmid pHP-187

  0.187

   circular

  CP001980

Plasmid pHP-42*

  0.042

   circular

  CP001979

§ Number of protein-coding genes: 4,180; Number of protein-coding genes: 178;

* Number of protein-coding genes: 52

Figure 3

Graphical circular maps of the genome and the two plasmids of HP15. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 3B

Genome statistics for M. adhaerens HP15

Attribute

   Value

        % of totala

Genome size (bp)

   4,651,725

DNA Coding region (bp)

   4,178,502

        89.8

DNA G+C content (bp)

   2,644,970

        56.9

Number of replicons

   3

Extrachromosomal elements

   2

Total genesb

   4,410

tRNA genes

   51

        1.16

5S rRNA genes

   3

        0.07

16S rRNA genes

   3

        0.07

23S rRNA genes

   3

        0.07

Protein-coding genes

   4,355

        98.66

Genes assigned to COGs

   3,027

        67.54

Genes with Pfam domains

   2,918

        65.1

1 Pfam domain

   2,041

        45.54

2 Pfam domains

   598

        13.34

3 Pfam domains

   194

        4.33

4 or more Pfam domains

   85

        1.9

Genes with signal peptides

   765

        17.07

Genes with transmembrane helices

   1,043

        23.27

1 transmembrane helix

   341

        7.61

2 transmembrane helices

   154

        3.44

3 transmembrane helices

   72

        1.61

4 or more transmembrane helices

   476

        10.62

Genes in paralogous clusters

   570

        12.72

Genes with 1 paralog

   364

        8.12

Genes with 2 paralogs

   63

        1.41

Genes with 3 paralogs

   26

        0.58

Genes with 4 or more paralogs

   117

        2.61

Pseudo/hypothetical genes

   391

        8.72

Conserved hypothetical genes

   668

        14.90

Genes for function prediction

   3,363

        75.03

a) The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

b) Also includes 54 pseudogenes and 5 other genes.

Table 4

Number of genes associated with the 21 general COG functional categories

Code

  Value

  %agea

    Description

J

  162

  3.7

    Translation

A

  0

  0

    RNA processing and modification

K

  161

  3.6

    Transcription

L

  132

  3

    Replication, recombination and repair

B

  0

  0

    Chromatin structure and dynamics

D

  32

  0.7

    Cell cycle control, mitosis and meiosis

Y

  0

  0

    Nuclear structure

V

  0

  0

    Defense mechanisms

T

  199

  4.5

    Signal transduction mechanisms

M

  151

  3.4

    Cell wall/membrane biogenesis

N

  166

  3.8

    Cell motility

Z

  0

  0

    Cytoskeleton

W

  0

  0

    Extracellular structures

U

  0

  0

    Intracellular trafficking and secretion

O

  127

  2.9

    Posttranslational modification, protein turnover, chaperones

C

  192

  4.3

    Energy production and conversion

G

  82

  1.9

    Carbohydrate transport and metabolism

E

  254

  5.7

    Amino acid transport and metabolism

F

  51

  1.1

    Nucleotide transport and metabolism

H

  97

  2.2

    Coenzyme transport and metabolism

I

  141

  3.2

    Lipid transport and metabolism

P

  138

  3.1

    Inorganic ion transport and metabolism

Q

  76

  1.7

    Secondary metabolites biosynthesis, transport and catabolism

R

  330

  7.5

    General function prediction only

S

  251

  5.7

    Function unknown

-

  285

  6.4

    multiple COGs

  3,027

  68.6

    Total

-

  1,383

  31.4

    Not in COGs

a) The total is based on the total number of protein coding genes in the annotated genome

Flagella-associated gene clusters of M. adhaerens HP15

Because M. adhaerens HP15 was experimentally shown to adhere to diatom cells, gene clusters coding for secretion, assembly, and mechanistic function of the polar flagellum were analyzed in detail (Figure 4). Besides several other chemotactic mechanisms and various cell surface interactions, bacterial flagella and other cell appendages had previously been shown to be instrumental for chemotactic movement towards and adhesion to biotic surfaces [36,37]. The amino acid sequences of proteins encoded by the three identified gene clusters showed significant similarities to orthologous and experimentally well-described gene products of P. aeruginosa PAO1 and various other bacterial species as determined by BLASTP algorithm comparison using the Blosum 62 substitution matrix [29]. Not surprisingly, hook and motor switch complex components were most conserved. However, gene products involved in flagellar filament formation encoded by Cluster II also showed 53 to 78% similarity to the respective PAO1 proteins. Mutagenesis of flagella-associated genes of M. adhaerens HP15 will be carried out in the near future to study the role of flagella in bacteria-diatom interactions and to further our understanding of the cell-to-cell communication between those organisms.

Figure 4

Schematic presentation of the three flagella-associated gene clusters of M. adhaerens HP15 coding for the basal body, the filament, and the hook and motor switch complex. Identities to the respective orthologs in the genome of P. aeruginosa PAO1 are indicated by gray-scale code. Numbers of CDS are shown below gene names.

Declarations

Acknowledgements

We thank Yannic Ramaye for help with TEM operation and Christian Quast for computer support. The work was financially supported by the Max Planck Society, the Helmholtz Foundation, and Jacobs University Bremen.


This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

  1. Kaeppel EC, Gärdes A, Seebah S, Grossart HP and Ullrich MS. Marinobacter adhaerens sp. nov., prominent in aggregate formation with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol. 2010; (Submitted).
  2. Grossart HP, Schlingloff A, Bernhard M, Simon M and Brinkhoff T. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol. 2004; 47:387-396 View ArticlePubMed
  3. Gärdes A, Iversen M, Grossart H, Passow U and Ullrich MS. Diatom-associated bacteria are required for Thalassiosira weissflogii aggregation. ISME J. 2010; (In press). View ArticlePubMed
  4. Fowler SW and Knauer GA. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr. 1986; 16:147-194 View Article
  5. Alldredge AL and Silver MW. Characteristics, dynamics and significance of marine snow. Prog Oceanogr. 1988; 20:41-82 View Article
  6. Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr. 2002; 55:287-333 View Article
  7. Simon M, Grossart HP, Schweitzer B and Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002; 28:175-211 View Article
  8. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH. The oceanic gel phase: a bridge in the DOM-POM continuum, p. 67-85. Symposium on New Approaches in Marine Organic Biogeochemistry held in Honor of the Life and Science of John I Hedges. 2003; Elsevier Science Bv.
  9. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ and Angiuoli SV. Towards a richer description of our complete collection of genomes and metagenomes: the “Minimum Information about a Genome Sequence” (MIGS) specification. Nat Biotechnol. 2008; 26:541-547 View ArticlePubMed
  10. Woese CR, Kandler O and Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990; 87:4576-4579 View ArticlePubMed
  11. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.
  12. . Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106. Int J Syst Evol Microbiol. 2005; 55:2235-2238 View Article
  13. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.
  14. Bowman JP, McMeekin TA. Order X. Alteromonadales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 443.
  15. . Validation List no. 81. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol. 2001; 51:1229PubMed
  16. Ivanova EP and Mikhailov VV. A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Microbiology. 2001; 70:10-17 View Article
  17. Ivanova EP, Flavier S and Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol. 2004; 54:1773-1788 View ArticlePubMed
  18. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P and Bertrand JC. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol. 1992; 42:568-576 View ArticlePubMed
  19. Liolios K, Mavromatis K, Tavernarakis N and Kyrpides NC. The Genome On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 2008; 36:D475-D479 View ArticlePubMed
  20. Green DH, Bowman JP, Smith EA, Gutierrez T and Bolch CJS. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol. 2006; 56:523-527 View ArticlePubMed
  21. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV and Stackebrandt E. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol. 2005; 55:143-148 View ArticlePubMed
  22. Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO and Rosselló-Móra R. The All-Species Living Tree Project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008; 31:241-250 View ArticlePubMed
  23. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner T, Lai S, Steppi G and Jobb W. ARB: a software environment for sequence data. Nucleic Acids Res. 2004; 32:1363-1371 View ArticlePubMed
  24. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688 View ArticlePubMed
  25. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE and Stackebrandt E. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987; 37:463
  26. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res. 1941; 4:42-75
  27. Delcher AL, Bratke KA, Powers EC and Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007; 23:673-679 View ArticlePubMed
  28. Lowe TM and Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25:955-964 View ArticlePubMed
  29. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410PubMed
  30. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R and Puhler A. GenDB--an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003; 31:2187-2195 View ArticlePubMed
  31. Emanuelsson O, Brunak S, Von Heijne G and Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007; 2:953-971 View ArticlePubMed
  32. Nielsen H, Brunak S and Von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 1999; 12:3-9 View ArticlePubMed
  33. Krogh A, Larsson B, Von Heijne G and Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001; 305:567-580 View ArticlePubMed
  34. Quast C. MicHanThi - design and implementation of a system for the prediction of gene functions in genome annotation projects. Master Thesis 2006 (Available on request).
  35. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA and Barrell B. Artemis: sequence visualization and annotation. Bioinformatics. 2000; 16:944-945 View ArticlePubMed
  36. O'Toole GA and Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998; 30:295-304 View ArticlePubMed
  37. Pallen MJ and Matzke NJ. From The Origin of Species to the origin of bacterial flagella. Nat Rev Microbiol. 2006; 4:784-790 View ArticlePubMed