Open Access

Complete genome sequence of Bacteroides salanitronis type strain (BL78T)

  • Sabine Gronow
  • , Brittany Held,
  • , Susan Lucas
  • , Alla Lapidus
  • , Tijana Glavina Del Rio
  • , Matt Nolan
  • , Hope Tice
  • , Shweta Deshpande
  • , Jan-Fang Cheng
  • , Sam Pitluck
  • , Konstantinos Liolios
  • , Ioanna Pagani
  • , Natalia Ivanova
  • , Konstantinos Mavromatis
  • , Amrita Pati
  • , Roxane Tapia,
  • , Cliff Han,
  • , Lynne Goodwin,
  • , Amy Chen
  • , Krishna Palaniappan
  • , Miriam Land,
  • , Loren Hauser,
  • , Yun-Juan Chang,
  • , Cynthia D. Jeffries,
  • , Evelyne-Marie Brambilla
  • , Manfred Rohde
  • , Markus Göker
  • , John C. Detter,
  • , Tanja Woyke
  • , James Bristow
  • , Victor Markowitz
  • , Philip Hugenholtz,
  • , Nikos C. Kyrpides
  • , Hans-Peter Klenk
  • and Jonathan A. Eisen,
Corresponding author

DOI: 10.4056/sigs.1704212

Received: 29 April 2011

Published: 29 April 2011

Abstract

Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Keywords:

strictly anaerobicnon-motilerod-shapedGram-negativemesophiliccecumpoultrychemoorganotrophicBacteroidaceaeGEBA

Introduction

Strain BL78T (= DSM 18170 = CCUG 54637 = JCM 13657) is the type strain of Bacteroides salanitronis which belongs to the large genus Bacteroides [1,2]. Currently, there are 88 species placed in the genus Bacteroides. The species epithet is derived from the name of Joseph P. Salanitro, an American microbiologist. B. salanitronis strain BL78T was isolated among other Bacteroides strains from the cecum of a healthy chicken. No other strain belonging to the same species has been identified [2]. Many Bacteroides species are common inhabitants of the intestine where they help to degrade complex molecules such as polysaccharides or transform steroids [3,4]. They also play a role as beneficent protectors of the gut against pathogenic microorganisms [5]. Here we present a summary classification and a set of features for B. salanitronis BL78T, together with the description of the complete genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of strain BL78T was compared using NCBI BLAST under default settings (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [6] and the relative frequencies, weighted by BLAST scores, of taxa and keywords (reduced to their stem [7]) were determined. The single most frequent genus was Bacteroides (100.0%) (1 hit in total). Regarding the single hit to sequences from members of the species, the average identity within HSPs was 99.7%, whereas the average coverage by HSPs was 96.2%. No hits to sequences with (other) species names were found. The highest-scoring environmental sequence was DQ456041 ('pre-adolescent turkey cecum clone CFT112F11'), which showed an identity of 96.8% and an HSP coverage of 63.9%. The five most frequent keywords within the labels of environmental samples which yielded hits were 'fecal' (9.3%), 'microbiota' (7.5%), 'human' (7.1%), 'antibiot, effect, gut, pervas' (7.1%) and 'anim, beef, cattl, coli, escherichia, feedlot, habitat, synecolog' (2.2%) (249 hits in total).

Figure 1 shows the phylogenetic neighborhood of B. salanitronis in a 16S rRNA based tree. The sequences of the six 16S rRNA gene copies in the genome differ from each other by up to 26 nucleotides, and differ by up to 26 nucleotides from the previously published 16S rRNA sequence (AB253731).

Figure 1

Phylogenetic tree highlighting the position of B. salanitronis relative to a selection of other type strains within the genus. The tree was inferred from 1,412 aligned characters [8,9] of the 16S rRNA gene sequence under the maximum likelihood criterion [10] and rooted in accordance with the current taxonomy. The branches are scaled in terms of the expected number of substitutions per site. Numbers to the right of bifurcations are support values from 1,000 bootstrap replicates [11] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [12] but unpublished are labeled with one asterisk, published genomes with two asterisks [13-15].

The cells of B. salanitronis are generally rod-shaped (0.4-0.7 × 0.8-5.6 µm) with rounded ends (Figure 2). The cells are usually arranged singly or in pairs [2]. B. salanitronis is a Gram-negative, non-spore-forming bacterium (Table 1) that is described as non-motile, with only five genes associated with motility having been found in the genome (see below). The temperature optimum for strain BL78T is 37°C. B. salanitronis is a strictly anaerobic chemoorganotroph and is able to ferment glucose, mannose, sucrose, maltose, arabinose, cellobiose, lactose, xylose and raffinose [2]. The organism hydrolyzes esculin but does not liquefy gelatin, and neither reduces nitrate nor produces indole from tryptophan [2]. B. salanitronis does not utilize trehalose, glycerol, mannitol, sorbitol or melezitose; rhamnose and salicin are fermented weakly [2]. Growth is possible in the presence of bile [2]. Major fermentation products from broth (1% peptone, 1% yeast extract, and 1% glucose each (w/v)) are acetic acid and succinic acid, whereas isovaleric acid is produced in small amounts [2]. B. salanitronis shows activity for alkaline phosphatase, α- and β-galactosidases, α- and β-glucosidases, α-arabinosidase, leucyl glycine arylamidase, alanine arylamidase and glutamyl glutamic acid arylamidase but no activity for urease, catalase, glutamic acid decarboxylase, arginine dihydrolase, β-galactosidase 6-phosphate, β-glucuronidase, N-acetyl-β-glucosaminidase, α-fucosidase and arginine, proline, leucine, phenylalanine, pyroglutamic acid, tyrosine, glycine, histidine and serine arylamidase [2].

Figure 2

Scanning electron micrograph of B. salanitronis BL78T

Table 1

Classification and general features of B. salanitronis BL78T according to the MIGS recommendations [16].

MIGS ID

   Property

    Term

    Evidence code

   Current classification

    Domain Bacteria

    TAS [17]

    Phylum 'Bacteroidetes'

    TAS [18]

    Class 'Bacteroidia'

    TAS [19]

    Order 'Bacteroidales'

    TAS [20]

    Family Bacteroidaceae

    TAS [21,22]

    Genus Bacteroides

    TAS [21,23-26]

    Species Bacteroides salanitronis

    TAS [2]

    Type strain BL78

    TAS [2]

   Gram stain

    negative

    TAS [2]

   Cell shape

    rod-shaped

    TAS [2]

   Motility

    non-motile

    TAS [2]

   Sporulation

    none

    TAS [2]

   Temperature range

    mesophile

    TAS [2]

   Optimum temperature

    37°C

    TAS [2]

   Salinity

    normal

    NAS

MIGS-22

   Oxygen requirement

    strictly anaerobic

    TAS [2]

   Carbon source

    carbohydrates

    TAS [2]

   Energy metabolism

    chemoorganotroph

    TAS [2]

MIGS-6

   Habitat

    chicken

    TAS [2]

MIGS-15

   Biotic relationship

    free-living

    NAS

MIGS-14

   Pathogenicity

    none

    NAS

   Biosafety level

    1

    TAS [27]

   Isolation

    chicken cecum

    TAS [2]

MIGS-4

   Geographic location

    Japan

    TAS [2]

MIGS-5

   Sample collection time

    November 2005

    IDA

MIGS-4.1

   Latitude

    not reported

MIGS-4.2

   Longitude

    not reported

MIGS-4.3

   Depth

    not reported

MIGS-4.4

   Altitude

    not reported

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [28]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Chemotaxonomy

B. salanitronis strain BL78T contains menaquinones MK-11 and MK-12 as principal respiratory quinones (43% each), small amounts of MK-10 (5%) and MK-13 (7%) are found as minor components [2]. The major fatty acids found were anteiso-C15:0 (32%), iso-C15:0 (14%), 3-hydroxy C16:0 (12%) and 3-hydroxy iso-C17:0 (10%). Fatty acids C14:0 (4%), C15:0 (2%), C16:0 (8%), C18:1 (2%), C18:2 (2%) and iso-C14:0 (2%) were found in minor amounts [2].

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [29], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [30]. The genome project is deposited in the Genomes On Line Database [31] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Table 2

Genome sequencing project information

MIGS ID

   Property

   Term

MIGS-31

   Finishing quality

   Finished

MIGS-28

   Libraries used

   Three genomic libraries: one 454 pyrosequence standard library,   one 454 PE library (7 kb insert size), one Illumina library

MIGS-29

   Sequencing platforms

   Illumina GAii, 454 GS FLX Titanium

MIGS-31.2

   Sequencing coverage

   283.0 × Illumina; 37.7 × pyrosequence

MIGS-30

   Assemblers

   Newbler version 2.3-PreRelease-09-14-2009-bin, Velvet, phrap version SPS 4.24

MIGS-32

   Gene calling method

   Prodigal 1.4, GenePRIMP

   INSDC ID

   CP002530 (chromosome)   CP002531 (plasmid 1)   CP002532 (plasmid 2)   CP002533 (plasmid 3)

   Genbank Date of Release

   February 28, 2011

   GOLD ID

   Gc001665

   NCBI project ID

   40066

   Database: IMG-GEBA

   2503754023

MIGS-13

   Source material identifier

   DSM 18170

   Project relevance

   Tree of Life, GEBA

Growth conditions and DNA isolation

B. salanitronis BL78T, DSM 18170, was grown anaerobically in DSMZ medium 104 (Peptone-Yeast extract-Glucose broth) [32] at 37°C. DNA was isolated from 0.5-1 g of cell paste using MasterPure Gram-positive DNA purification kit (Epicentre MGP04100) following the standard protocol as recommended by the manufacturer, adding 20 µL lysozyme (100mg/µl), and 10 µL mutanolysin, achromopeptidase, and lysostaphine, each, for 40 min lysis at 37ºC followed by one hour incubation on ice. DNA is available through the DNA Bank Network [33].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [34]. Pyrosequencing reads were assembled using the Newbler assembler version 2.3-PreRelease-09-14-2009-bin (Roche). The initial Newbler assembly consisting of 100 contigs in two scaffolds was converted into a phrap assembly [35] by making fake reads from the consensus, to collect the read pairs in the 454 paired-end library. Illumina GAii sequencing data (920.8 Mb) was assembled with Velvet, version 0.7.63 [36] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The 454 draft assembly was based on 109.0 Mb of 454 standard data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed software package [35] was used for sequence assembly and quality assessment in the subsequent finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution [34], Dupfinisher [37], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epicentre Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F.Chang, unpublished). A total of 193 additional reactions and four shatter libraries were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to correct potential base errors and increase consensus quality using a software Polisher developed at JGI [38]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 320.7 × coverage of the genome. The final assembly contained 393,135 pyrosequence and 25,576,764 Illumina reads.

Genome annotation

Genes were identified using Prodigal [39] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [40]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [41].

Genome properties

The genome consists of a 4,242,803 bp long chromosome with a G+C content of 47%, as well as three plasmids of 6,277 bp, 18,280 bp and 40,303 bp length (Table 3 and Figure 3). Of the 3,838 genes predicted, 3,737 were protein-coding genes, and 101 RNAs; 96 pseudogenes were also identified. The majority of the protein-coding genes (57.3%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3

Genome Statistics

Attribute

   Value

  % of Total

Genome size (bp)

   4,308,663

  100.00%

DNA coding region (bp)

   3,759,354

  87.25%

DNA G+C content (bp)

   2,003,128

  46.49%

Number of replicons

   4

Extrachromosomal elements

   3

Total genes

   3,838

  100.00%

RNA genes

   101

  2.63%

rRNA operons

   6

Protein-coding genes

   3,737

  97.37%

Pseudo genes

   96

  2.50%

Genes with function prediction

   2,200

  57.32%

Genes in paralog clusters

   876

  22.82%

Genes assigned to COGs

   2,013

  52.45%

Genes assigned Pfam domains

   2,269

  59.12%

Genes with signal peptides

   918

  23.92%

Genes with transmembrane helices

   794

  20.69%

CRISPR repeats

   0

Figure 3

Graphical circular map of the chromosome (plasmid maps not shown). From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 4

Number of genes associated with the general COG functional categories

Code

   value

  %age

   Description

J

   147

  6.8

   Translation, ribosomal structure and biogenesis

A

   0

  0.0

   RNA processing and modification

K

   143

  6.6

   Transcription

L

   194

  9.0

   Replication, recombination and repair

B

   0

  0.0

   Chromatin structure and dynamics

D

   31

  1.4

   Cell cycle control, cell division, chromosome partitioning

Y

   0

  0.0

   Nuclear structure

V

   63

  2.9

   Defense mechanisms

T

   85

  3.9

   Signal transduction mechanisms

M

   193

  8.9

   Cell wall/membrane/envelope biogenesis

N

   5

  0.2

   Cell motility

Z

   0

  0.0

   Cytoskeleton

W

   0

  0.0

   Extracellular structures

U

   61

  2.8

   Intracellular trafficking, secretion, and vesicular transport

O

   61

  2.8

   Posttranslational modification, protein turnover, chaperones

C

   105

  4.9

   Energy production and conversion

G

   174

  8.0

   Carbohydrate transport and metabolism

E

   134

  6.2

   Amino acid transport and metabolism

F

   68

  3.1

   Nucleotide transport and metabolism

H

   98

  4.5

   Coenzyme transport and metabolism

I

   62

  2.9

   Lipid transport and metabolism

P

   104

  4.8

   Inorganic ion transport and metabolism

Q

   29

  1.3

   Secondary metabolites biosynthesis, transport and catabolism

R

   285

  13.2

   General function prediction only

S

   125

  5.8

   Function unknown

-

   1,825

  47.6

   Not in COGs

Declarations

Acknowledgements

We would like to gratefully acknowledge the help of Sabine Welnitz (DSMZ) for growing cultures of B. salanitronis. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2.


This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

  1. Garrity G. NamesforLife. BrowserTool takes expertise out of the database and puts it right in the browser. Microbiol Today. 2010; 7:1
  2. Lan PTN, Sakamoto M, Sakata S and Benno Y. Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol. 2006; 56:2853-2859 View ArticlePubMed
  3. Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host Microbe. 2009; 5:522-526 View ArticlePubMed
  4. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA and Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005; 307:1915-1920 View ArticlePubMed
  5. Hentges DJ. Role of the intestinal flora in host defense against infection. In Human Intestinal Microflora in Health and Disease 1983; pp. 311–331. Edited by D. J. Hentges. New York: Academic Press.
  6. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P and Andersen GL. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol. 2006; 72:5069-5072 View ArticlePubMed
  7. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130-137.
  8. Lee C, Grasso C and Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics. 2002; 18:452-464 View ArticlePubMed
  9. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17:540-552PubMed
  10. Stamatakis A, Hoover P and Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008; 57:758-771 View ArticlePubMed
  11. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME and Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci. 2009; 5541:184-200 View Article
  12. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM and Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 2010; 38:D346-D354 View ArticlePubMed
  13. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B and Quail MA. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science. 2005; 307:1463-1465 View ArticlePubMed
  14. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV and Gordon JI. A genomic view of the human Bacteroides thetaiotaomicron symbiosis. Science. 2003; 299:2074-2076 View ArticlePubMed
  15. Land M, Held B, Gronow S, Abt B, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Cheng JF and Pitluck S. Non-contiguous finished genome sequence of Bacteroides coprosuis type strain (PC 139T). Stand Genomic Sci. 2011; 4 PubMed
  16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ and Angiuoli SV. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008; 26:541-547 View ArticlePubMed
  17. Woese CR, Kandler O and Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990; 87:4576-4579 View ArticlePubMed
  18. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.
  19. Ludwig W, Euzeby J, Whitman WG. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes http://www.bergeys.org/outlines/Bergeys_Vol_4_Outline.pdf. Taxonomic Outline 2008
  20. Garrity GM, Holt JG. 2001. Taxonomic outline of the Archaea and Bacteria, p. 155-166. In G. M. Garrity, D. R. Boone, and R. W. Castenholz (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed, vol. 1. Springer, New York.
  21. Skerman VBD, McGowan V and Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol. 1980; 30:225-420 View Article
  22. Pribram E. Klassification der Schizomyceten. Klassifikation der Schizomyceten (Bakterien), Franz Deuticke, Leipzig, 1933, p. 1-143.
  23. Castellani A, Chalmers AJ. Genus Bacteroides Castellani and Chalmers, 1918. Manual of Tropical Medicine, Third Edition, Williams, Wood and Co., New York, 1919, p. 959-960.
  24. Holdeman LV, Moore WEC. Genus I. Bacteroides Castellani and Chalmers 1919, 959. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 385-404.
  25. Cato EP, Kelley RW, Moore WEC and Holdeman LV. Bacteroides zoogleoformans, Weinberg, Nativelle, and Prévot 1937) corrig. comb. nov.: emended description. Int J Syst Bacteriol. 1982; 32:271-274 View Article
  26. Shah HN and Collins MD. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol. 1989; 39:85-87 View Article
  27. Classification of bacteria and archaea in risk groups. TRBA 466.Web Site
  28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS and Eppig JT. Gene Ontology: tool for the unification of biology. Nat Genet. 2000; 25:25-29 View ArticlePubMed
  29. Klenk HP and Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol. 2010; 33:175-182 View ArticlePubMed
  30. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M and Tindall BJ. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature. 2009; 462:1056-1060 View ArticlePubMed
  31. Markowitz VM, Ivanova NN, Chen IMA, Chu K and Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009; 25:2271-2278 View ArticlePubMed
  32. List of growth media used at DSMZ: Web Site
  33. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG and Wägele JW. The DNA Bank Network: the start from a German initiative. Biopreservation and Biobanking. 2011; 9:51-55 View Article
  34. . Web Site
  35. Phrap and Phred for Windows. MacOS, Linux, and Unix. Web Site
  36. Zerbino DR and Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18:821-829 View ArticlePubMed
  37. Han C, Chain P. 2006. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Arabina HR, Valafar H (eds), CSREA Press. June 26-29, 2006: 141-146.
  38. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.
  39. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW and Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11:119 View ArticlePubMed
  40. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A and Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods. 2010; 7:455-457 View ArticlePubMed
  41. Markowitz VM, Ivanova NN, Chen IMA, Chu K and Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009; 25:2271-2278 View ArticlePubMed