
Standards in Genomic Sciences (2013) 8:375-388  DOI:10.4056/sigs.3787426 

 
The Genomic Standards Consortium

 

Complete genome sequence of Dehalobacter restrictus 
PER-K23T 

Thomas Kruse1*, Julien Maillard2, Lynne Goodwin3,4, Tanja Woyke3, Hazuki Teshima3,4,  
David Bruce3,4, Chris Detter3,4, Roxanne Tapia3,4, Cliff Han3,4, Marcel Huntemann3, Chia-Lin 
Wei3, James Han3, Amy Chen3, Nikos Kyrpides3, Ernest Szeto3, Victor Markowitz3, Natalia 
Ivanova3, Ioanna Pagani3, Amrita Pati3, Sam Pitluck3, Matt Nolan3, Christof Holliger2, and 
Hauke Smidt1 

1 Wageningen University, Agrotechnology and Food Sciences, Laboratory of Microbiology, 
Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands. 

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and  
Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-
1015 Lausanne, Switzerland. 

3 DOE Joint Genome Institute, Walnut Creek, California, USA 
4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 

*Corresponding author: Thomas Kruse (thomas@theviking.dk) 

Keywords: Dehalobacter restrictus type strain, anaerobe, organohalide respiration, PCE, TCE, 
reductive dehalogenases 

Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species 
Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, cou-
pling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth 
has not been observed with any other electron donor or acceptor, nor has fermentative 
growth been shown. Here we introduce the first full genome of a pure culture within the ge-
nus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 
RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted re-
ductive dehalogenase genes, the majority of which appear to be full length. The reductive 
dehalogenase genes are mainly located in two clusters, suggesting a much larger potential for 
organohalide respiration than previously anticipated. 

Abbreviations: OHR- organohalide respiration, OHRB- organohalide respiring bacteria, RDH- 
reductive dehalogenase homologue, PCE- tetrachloroethene 

Introduction 
Dehalobacter restrictus strain PER-K23 (DSM 
9455), is the type strain of the species 
Dehalobacter restrictus [1]. Currently two pure 
cultures of D. restrictus have been described, 
namely D. restrictus strains PER-K23 and TEA 
[1,2]. 
We publish here the first full genome of a pure 
culture within the genus Dehalobacter and a pre-
liminary comparison with a previously obtained 
metagenome from a co-culture containing 
Dehalobacter sp. strain E1 and Sedimentibacter sp 
[3]. 
Organohalide respiration (OHR) is considered as a 
key process in bioremediation of sites contaminat-

ed with organohalides such as tetrachloroethene 
(PCE) and trichloroethene (TCE), leading to a great 
interest in understanding the physiology and me-
tabolism of organohalide respiring bacteria 
(OHRB). Most OHRBs are facultative organohalide 
respirers, capable of dehalogenating a limited 
number of halogenated compounds, as part of a 
versatile metabolism. This group consists of several 
genera, including Desulfitobacterium, Geobacter and 
Sulfurospirillum. Other isolates are obligate OHRB, 
among which isolates and enrichments of different 
Dehalococcoides mccartyi strains are the best stud-
ied. They have been shown to degrade a large vari-
ety of halogenated compounds solely using H2 as 
the electron donor. Until recently, the genus 
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Dehalobacter had been thought to encompass ex-
clusively obligate OHRB, however, at least some 
members of this genus have been described as able 
to ferment dichloromethane [4,5]. D. restrictus 
strain PER-K23 is an obligate OHRB, and like 
Dehalococcoides mccartyi, uses H2 as a sole electron 
donor. These similarities in physiology and ecology 
are noteworthy since Dehalobacter spp. are 
phylogenetically closely related to the metabolical-
ly versatile Desulfitobacterium spp. 

D. restrictus strain PER-K23 was isolated from a 
packed bed column containing sediment from the 
river Rhine collected near Wageningen, the Neth-
erlands, and granular sludge from a sugar refin-
ery. This column had been fed with PCE for a pro-
longed period, prior to isolation of D. restrictus 
strain PER-K23 [6]. 

D. restrictus strain PER-K23 was chosen for ge-
nome sequencing because it is the type strain of 
the Dehalobacter restrictus species. Studying the 
genome gives an improved insight into the physi-
ology and evolution of the genus Dehalobacter and 
may ultimately lead to unlocking its full potential 
for bioremediation. 

Classification and features 
Dehalobacter restrictus is a member of the phylum 
Firmicutes, class Clostridia, order Clostridiales, and 

family Peptococcaceae [1],(Table 1). D. restrictus is 
closely related to the newly sequenced 
Dehalobacter sp. strain E1 [3], but grows in pure 
culture. Both Dehalobacter spp. and 
Desulfitobacterium spp. belong to the family 
Peptococcaceae (Figure 1). All members of this 
family are anaerobes, constituting a diverse group 
with respect to their metabolism and morphology 
[23]. D. restrictus strain PER-K23 is a rod-shaped 
bacterium with a single lateral flagellum and has 
not been reported to form spores. It stains Gram-
negative, even though it phylogenetically belongs 
to the Gram-positive Firmicutes, and does not have 
an outer membrane, indicating that it should be 
considered a Gram-positive [1]. D. restrictus strain 
PER-K23 grows by coupling the oxidation of H2 to 
the reduction of PCE or TCE, growth has not been 
observed with any other electron donor or accep-
tor, nor has fermentative growth been shown 
[1,6]. D. restrictus strain PER-K23 requires iron as 
a trace element, the vitamins thiamine and 
cyanocobalamin, and the amino acids arginine, 
histidine and threonine for growth [1]. 

Genome project history 
Table 2 presents the project information in com-
pliance to MIGS version 2.0 [24]. 

 

 
Figure 1. Phylogenetic tree highlighting the position of Dehalobacter restrictus relative to phylogenetically closely 
related organisms. 16S rRNA sequences were retrieved from Genbank (NCBI), and accession numbers are given in 
parentheses. Strains from which a full genome sequence are available are indicated with an asterisk. Phylogenetic 
analysis was done using the MEGA5 software package [20]. Sequences were aligned using the MUSCLE algorithm 
before a neighbor joining tree was constructed and validated with 1,000 bootstraps [21,22]. The reference bar indi-
cates 2% sequence divergence. 
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Table 1. Classification and general features of D. restrictus strain PER-K23 according to MIGS recommendations [7]. 
MIGS ID Property Term Evidence code a 

  Domain Bacteria TAS [8] 

  Phylum Firmicutes TAS [9-11] 

  Class Clostridia TAS [12,13] 

 Current classification Order Clostridiales TAS [14,15] 

  Family Peptococcaceae TAS [14,16] 

  Genus Dehalobacter TAS [17,18] 

  Species Dehalobacter restrictus TAS [17,18] 

  Type strain PER-K23  

 Gram stain Negative TAS [1] 

 Cell shape Straight rod TAS [1] 

 Motility Motile TAS [1] 

 Sporulation Not observed TAS [1] 

 Temperature range 10-37 °C TAS [1] 

 Optimum temperature 25-30 °C TAS [1] 

 Carbon source Acetate, yeast extract TAS [1] 

 Energy source H2 as sole electron donor TAS [1] 

 Terminal electron receptor PCE and TCE TAS [1] 

MIGS-6 Habitat Anaerobic river sediment TAS [1,6] 

MIGS-6.3 Salinity Not tested  

MIGS-22 Oxygen Strictly anaerobic  [1,6] 

MIGS-15 Biotic relationship Free living  [1] 

MIGS-14 Pathogenicity None known  

MIGS-4 Geographic location River Rhine, near Wageningen, The Netherlands  [1,6] 

MIGS-5 Sample collection time 1992  
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the 
literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based 
on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene 
Ontology project [19]. 
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Table 2. Project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Closed genome 

MIGS-28 Libraries used 
Two genomic libraries, one paired-end 454 library and one Illumina 
library 

MIGS-29 Sequencing platforms 454 GS FLX Titanium and Illumina GAii 

MIGS-31.2 Fold coverage 8.5 for 454 and 120 for Illumina 

MIGS-30 Assemblers Newbler version 2.3, VELVET, version 1.0.13 and phrap, version SPS – 
4.24 

MIGS-32 Gene calling method Prodigal, GenePRIMP 

 Genome Database release December 28th, 2011 

 Genbank ID PRJNA66209 

 Genbank Date of Release  

 GOLD ID Gi05571 

 Project relevance Type strain, Bioremediation, Biotechnology 

Growth conditions and DNA isolation 
Dehalobacter restrictus strain PER-K23, DSM9455, 
was cultivated anaerobically as previously de-
scribed [1]. DNA was extracted from bacterial pel-
lets using the protocol recommended by the JGI. In 
brief, cell walls were digested with lysozyme be-
fore DNA was purified with 
hexadecyltrimethylammonium bromide, phenol 
and chloroform, and precipitated with isopropa-
nol. Quality and quantity of the obtained DNA 
were checked by running aliquots on agarose gels 
using lambda phage DNA as mass standard and 
HindIII digested lambda phage DNA as a size 
marker. 

Genome sequencing and assembly 
The draft genome of Dehalobacter restrictus PER-
K23 was generated at the DOE Joint genome Insti-
tute (JGI) using a combination of Illumina [25], 
and 454 technologies [26]. For this, genome we 
constructed and sequenced an Illumina GAii shot-
gun library which generated 77,929,756 reads to-
taling 5,922.7 Mb, and 1 paired end 454 library 
with an average insert size of 10 kb which gener-

ated 318,117 reads totaling 59.3 Mb of 454 data. 
All general aspects of library construction and se-
quencing performed at the JGI can be found at the 
JGI website [27]. The initial draft assembly con-
tained 90 contigs in 1 scaffold. The 454 paired end 
data were assembled together with Newbler, ver-
sion 2.3-PreRelease-6/30/2009. The Newbler 
consensus sequences were computationally 
shredded into 2 kb overlapping fake reads 
(shreds). Illumina sequencing data was assembled 
with VELVET, version 1.0.13 [28], and the consen-
sus sequence were computationally shredded into 
1.5 kb overlapping fake reads (shreds). We inte-
grated the 454 Newbler consensus shreds, the 
Illumina VELVET consensus shreds and the read 
pairs in the 454 paired end library using parallel 
phrap, version SPS - 4.24 (High Performance 
Software, LLC). The software Consed [29-31] was 
used in the following finishing process. Illumina 
data was used to correct potential base errors and 
increase consensus quality using the software Pol-
isher developed at JGI (Alla Lapidus, unpublished). 
Possible mis-assemblies were corrected using 
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gapResolution (Cliff Han, unpublished), 
Dupfinisher [32], or sequencing cloned bridging 
PCR fragments with subcloning. Gaps between 
contigs were closed by editing in Consed, by PCR 
and by Bubble PCR (J-F Cheng, unpublished) pri-
mer walks. A total of 134 additional reactions 
were necessary to close gaps and to raise the qual-
ity of the finished sequence. The total size of the 
genome is 2,943,336 bp and the final assembly is 
based on 24.6 Mb of 454 draft data which pro-
vides an average 8.5× coverage of the genome and 
348 Mb of Illumina draft data which provides an 
average 120× coverage of the genome. 

Genome annotation 
Genes of D. restrictus strain PER-K23 were identi-
fied using Prodigal [33] as part of the Oak Ridge 
National Laboratory genome annotation pipeline, 
followed by a round of manual curation using the 
JGI GenePRIMP pipeline [34]. The predicted CDSs 
were translated and used to search the National 

Center for Biotechnology Information (NCBI) non-
redundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. These 
data sources were combined to assert a product 
description for each predicted protein. Non-
coding DNA and miscellaneous features were pre-
dicted using tRNAscan-SE [35], RNAMMer [36], 
Rfam [37], TMHMM [38], and signalP [39]. 

Genome properties 
The genome consists of a single chromosome with 
a total size of 2,943,336 bp with 45% G+C content. 
A total of 2,908 genes were predicted, 2,826 of 
which are protein-coding genes. Genes with puta-
tive function corresponded to 76.7% (2,168), of all 
protein coding sequences with the remaining an-
notated as hypothetical proteins. In addition, 
1,174 protein coding genes belong to 356 
paralogous families in this genome. The properties 
and the statistics of the genome are summarized 
in Tables 3, 4 and 5. 

 

Table 3. Nucleotide content and gene count levels of the genome 
Attribute Value % of totala 

Genome size (bp) 2,943,336 100.00 

DNA coding region (bp) 2,473,591 84.04 

DNA G+C content (bp) 1,311,589 44.56 

Total genesb 2,908 100.00 

RNA genes 82 2.82 

Protein-coding genes 2,826 97.18 

Genes in paralog clusters 1,174 40.37 

Genes assigned to COGs 2,127 73.14 

Genes with signal peptides 756 26.00 

Genes with transmembrane helices 755 25.96 

Paralogous groups 356 40.37 

Reductive dehalogenasesc 25 0.86 
a The total is based on either the size of the genome in base pairs or the total 
number of protein coding genes in the annotated genome. 
b Also includes 143 pseudogenes. 
c Including pseudogenes 
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Table 4. Number of genes associated with the general COG functional categories 
Code Value %age Description 

J 149 6.4 Translation 

A -- -- RNA processing and modification 

K 176 7.6 Transcription 

L 180 7.8 Replication, recombination and repair 

B 1 0.1 Chromatin structure and dynamics 

D 44 1.9 Cell cycle control, cell division, chromosome partitioning 

Y -- -- Nuclear structure 

V 39 1.7 Defense mechanisms 

T 166 7.2 Signal transduction mechanisms 

M 148 6.4 Cell wall/membrane biogenesis 

N 71 3.1 Cell motility 

Z -- -- Cytoskeleton 

W -- -- Extracellular structures 

U 73 3.1 Intracellular trafficking and secretion 

O 84 3.6 Posttranslational modification, protein turnover, chaperones 

C 169 7.3 Energy production and conversion 

G 64 2.8 Carbohydrate transport and metabolism 

E 166 7.2 Amino acid transport and metabolism 

F 59 2.5 Nucleotide transport and metabolism 

H 118 5.1 Coenzyme transport and metabolism 

I 40 1.7 Lipid transport and metabolism 

P 105 4.5 Inorganic ion transport and metabolism 

Q 27 1.2 Secondary metabolites biosynthesis, transport and catabolism 

R 241 10.4 General function prediction only 

S 203 8.7 Function unknown 

- 781 26.9a Not in COGs 
a Percentage of the total number of protein coding genes in the annotated genome. 
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Table 5. Reductive dehalogenase paralogs encoded in the genome of D. restrictus strain PER-K23 
Locus tag a Ortholog in Dehalobacter sp. strain E1 b Comment 

Dehre_0785 No 
 

Dehre_0793 No 
 

Dehre_0806 No 
 

Dehre_0808 No N-terminally truncated 

Dehre_0815 No N-terminally truncated 

Dehre_0820 No 
 

Dehre_0826 No 
 

Dehre_0830 No 
 

Dehre_0832 (98.7; Dhb965) 
 

Dehre_0835 (98.7; Dhb968) 
 

Dehre_0990 (100; Dhb84) 
 

Dehre_1408 (99.6; Dhb1133) 
 

Dehre_2012 (96.6; Dhb1238) C-terminally truncatedc 

Dehre_2022 No 
 

Dehre_2026 No 
 

Dehre_2031 No 
 

Dehre_2037 No 
 

Dehre_2039 No 
 

Dehre_2044 No 
 

Dehre_2052 No 
 

Dehre_2058 No C-terminally truncated 

Dehre_2064 No 
 

Dehre_2065 No 
 

Dehre_2398 (90.4; Dhb490) PceA d 

Dehre_2792 Noe Partial sequence 
a RdhA paralogs are listed in order of their position in the genome. Light grey indicates RdhA 
paralogs belonging to rdh cluster A (Dehre_785-835) and dark grey rdh cluster B (Dehre_2012-
2065). 
b Orthology defined as more than 90% pairwise identity at the amino acid level, as suggested in 
[40]. Identity percentage based on full length RDHs and locus tag of the corresponding genes in 
Dehalobacter sp. strain E1 are given in brackets [3]. Identity percentages were calculated using 
MatGat [41]. 
c For the comparison, a manually curated version of Dehre_2012 was used, i.e. the entire gene 
without the annotated frame-shift mutation. 
d Dehre_2398 corresponds to the biochemically characterized PCE reductive dehalogenase (PceA) 
[42]. 
e The sequence is conserved between the two strains, but no gene is annotated at this position in 
D. sp. Strain E1. 
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Figure 2. Circular map of the chromosome of D. restrictus strain PER-K23. Labeling from the outside circle towards 
the inside circle. Numbers outside the map indicate nucleotide positions; Circles 1 and 2: predicted coding se-
quences, including pseudogenes, on the forward and reverse strand, respectively (colored by COG categories); 
Circle 3: RNA genes (tRNAs green, rRNAs red, other RNAs black); Circle 4: Position of reductive dehalogenase 
genes, in red, both functional and truncated, A and B indicate two rdh clusters; Circle 5: Position of transposases 
including inactive derivatives, in green; Circle 6: Position of genes related to corrinoid synthesis and uptake, in 
blue; Circle 7: GC content (peaks out/inside the circle indicate above or below average GC content, respectively: 
Circle 8: GC skew, calculated as (G-C)/(G+C), purple or olive indicates values lower or higher than 1, respectively. 
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Insights from genome sequencing 
Reductive dehalogenase paralogs 
The genome of D. restrictus contains 25 loci pre-
dicted to code for proteins with sequence homolo-
gy to reductive dehalogenases (RDHs). Among 
these 25 genes, one is a partial sequence and four 
are truncated due to possible frame-shift muta-
tions (Table 5). This high number is in contrast to 
those found to date for metabolically versatile 
organohalide respirers. These possess a limited 
number of RDHs typically in the range of 1 to7 
[43,44]. The number of RDHs in D. restrictus lies in 
the same range as seen in specialized 
organohalide respirers, such as Dehalococcoides 
mccartyi strains and Dehalogenimonas 
lykanthroporepellens, which have been predicted 
to possess between 10 and up to 36 RDHs [45,46]. 
For D. restrictus however, this finding is intriguing 
since, PCE and TCE, currently, are the only elec-
tron acceptors known to be utilized by strain PER-
K23 [1]. The identification of a total of 25 rdhA 
genes suggests that D. restrictus possesses a much 
larger potential for OHR metabolism, than previ-
ously anticipated. 
The majority of the rdhA genes are located in two 
clusters, one on each chromosome arm, with all 
but two RDHs being encoded on the leading 
strand. Cluster A is approximately 54 kb long, lo-
cated on the right chromosome arm and contains 
10 reductive dehalogenase genes including two 
truncated ones. Cluster B is approximately 61 kb 
long, located on the left chromosome arm and con-
tains 11 reductive dehalogenase genes, of which 
two appear truncated (Table 5 & Figure 2). 
The remaining three complete RDH genes and one 
partial RDH encoding gene are scattered through-
out the genome (Table 5 & Figure 2). A similar 
pattern has previously been observed in the ge-
nomes of Dehalococcoides mccartyi strains, where 
the majority of the RDHs are located on each side 
of, and close to the origin of replication [47]. The-
se regions were described as high plasticity re-
gions, where frequent events of rearrangement 
and horizontal gene transfer are thought to occur. 
It was suggested that these regions enable fast 
adaptation to dehalogenation of new 
organohalides, while at the same time protecting 
key metabolic functions from being disrupted by 
horizontal gene transfer events [47]. 
We identified transcriptional regulators of the 
CRP/FNR type being encoded by genes in the vi-
cinity of most of the RDH encoding genes, with 

PceA (encoded by Dehre_2398) as a notable ex-
ception [48]. A regulator of this type has been 
demonstrated to regulate the expression of the 
genes that code for chlorophenol reductive 
dehalogenase (cpr operon in Desulfitobacterium 
dehalogenans and Desulfitobacterium hafniense 
strain DCB-2 [49]. The presence of transcriptional 
regulator genes close to almost all rdhA genes 
suggest that their transcription is regulated. This 
was confirmed by a recent study looking at tran-
scription of rdh genes and the proteome of 
Dehalobacter restrictus strain PER-K23 growing in 
the presence of H2 and PCE. In this study we found 
that PceA (encoded by Dehre_2398) was highly 
present at both RNA and proteomic level, whereas 
the remaining RDHs and the corresponding tran-
scripts were either not detected at all or at very 
low levels, suggesting that the RDH encoding 
genes are tightly regulated, and probably only ex-
pressed in the presence of their specific substrate 
[48]. 
Recently the draft genome of Dehalobacter sp. 
strain E1 was published [3]. This genome contains 
nine potentially functional rdhA genes, and one 
pseudogene. Six of these are conserved between D. 
restrictus strain PER-K23 and strain E1 (Table 5). 
Two of the conserved rdhA genes are located at 
the edge of cluster A and one at the edge of cluster 
B. Interestingly all four rdhA genes present out-
side cluster A or B are conserved between the two 
strains, which may indicate that both cluster A and 
B represent high plasticity regions unique to D. 
restrictus (Table 5). Currently, pceA (encoded by 
Dehre_2398) is the only RDH-encoding gene from 
Dehalobacter restrictus to be characterized in de-
tail. The corresponding gene product PceA has 
been shown to catalyze the reduction of PCE to 
TCE and TCE to cis-DCE, the only two electron ac-
ceptors demonstrated to support growth of D. 
restrictus [1,42]. The pceA gene belongs to a gene 
cluster, pceABCT (Dehre_2395-2398), which is 
highly similar to a gene cluster identified in a 
composite transposon structure identified in sev-
eral Desulfitobacterium strains [50-52]. The trans-
poson structure is not conserved in D. restrictus 
although the gene cluster is flanked by sequences 
resembling transposase genes in a late state of 
decay (Dehre_2394 and 2399). This combined 
with the fact that the pceABCT gene cluster includ-
ing the cryptic transposases and the surrounding 
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genomic context are conserved between D. 
restrictus and D. strain E1 (data not shown) sug-
gest that the presence of pceABCT is the result of 
an ancient horizontal gene transfer event. 

Corrinoid synthesis and uptake 
Corrinoid is the key cofactor in characterized RD 
catalytic subunits. Dehalobacter restrictus strain 
PER-K23 requires vitamin B12 in the medium for 
growth [1]. 
Therefore it is noteworthy to report the presence 
of a full set of corrinoid biosynthesis genes in the 
genome of D. restrictus, although cbiH 
(Dehre_2856) encoding precorrin-3B C17-
methyltransferase displays a frame-shift mutation, 
and consequently is annotated as a pseudogene. 
The vitamin B12 synthesis pathway is encoded by 
two distinct gene clusters in D. restrictus strain 
PER-K23, where Dehre_2848-2865 encode en-
zymes of the upper pathway, and Dehre_1606-
1615 the lower pathway. One additional gene 
(Dehre_1488) belonging to the lower pathway is 
located elsewhere in the genome (Figure 2) [48]. 
The genome encodes several gene clusters associ-
ated with corrinoid uptake and salvaging path-
ways. Preliminary studies of the proteome from 
cultures grown at standard conditions or with 
partial vitamin B12 depletion showed that gene 
products encoded by one of the salvaging path-
ways (Dehre_0281-0291) were much more abun-
dant in the vitamin B12 starved cells than in the 
cells grown under standard concentrations (J. 
Maillard and T. Kruse unpublished data). These 
findings suggest that the de novo corrinoid syn-
thesis pathway is not functional and that 
Dehalobacter restrictus strain PER-K23 is depend-
ent on salvaging corrinoids from the environment. 

Hydrogenases 
Another interesting feature is the presence of 
genes predicted to code for eight different 
hydrogenases. These include three periplasmic 
membrane-bound Ni/Fe uptake hydrogenases, 
consisting of three subunits: a catalytic unit, an 
Fe/S cluster protein and a membrane-bound b-
type cytochrome (Dehre_551-553, 1061-1063 and 
2405-2007), two six-subunits membrane-bound 
energy-conserving Ni/Fe hydrogenases 
(Dehre_1568-1573 and 1645-1650), and three Fe-
only hydrogenases (Dehre_1739-1741, 2317-2320 
and 2372-2374). The Fe-only hydrogenases con-
sist of the catalytic subunit and two to three puta-
tive electron transferring subunits. 

The presence of multiple uptake hydrogenases has 
also been observed in Desulfitobacterium spp., 
whereas Dehalococcoides mccartyi strains only 
have one uptake hydrogenase [43,44,53]. The two 
six-subunits Ni/Fe resemble the Hyc and Ech 
complexes found in Dehalococcoides mccartyi 
strain 195 [54], as well as the Hyc complex found 
in Desulfitobacterium spp [43,44,55]. 
Disrupting either one uptake hydrogenase or the 
six-subunits energy-conserving hydrogenase in 
Desulfitobacterium dehalogenans led to loss of the 
ability to grow using lactate or formate as electron 
donor and 3-chloro-4-hydroxyphenylacetate as 
electron acceptor, indicating that hydrogenases 
may play an important role in the electron 
transport chain to RD catalytic subunits, even 
when hydrogen is not used as the initial electron 
donor [55]. 
The role of the six-subunit hydrogenase complex-
es are still poorly understood. It has been specu-
lated that they play a role in generating low poten-
tial electrons for OHR by reverse electron flow. 
However, this was considered as unlikely in one 
study where Dehalococcoides mccartyi strain 195 
was cultivated in the presence of varying concen-
trations of hydrogen [56]. The exact role of the 
different hydrogenases in Dehalobacter restrictus 
strain PER-K23 still needs further studies. 
The genome also encodes an intact Wood-
Ljungdahl pathway (Dehre_0130-0155 and 2348-
2351). The presence of a whole or partial Wood-
Ljungdahl pathway has been observed in other 
OHRB. The closely related Desulfitobacterium 
hafniense strains Y51 and DCB-2 both contain 
genes predicted to encode a full Wood-Ljungdahl 
pathway, and strain DCB-2 has been shown to fix 
CO2 [43,44]. The more distantly related 
Dehalococcoides mccartyi strains have been shown 
to contain partial Wood-Ljungdahl pathways, but 
its exact role in the metabolism of these organisms 
remains unclear [57,58]. 
The genome of D. restrictus contains 72 genes an-
notated as encoding transposases or inactive de-
rivatives thereof, whereas it only contains few 
phage-associated genes despite the lack of a 
CRISPR phage immunity system. 
Cells of Dehalobacter restrictus strain PER-K23 are 
motile [1]. The genome contains genes for synthe-
sis of flagella and several genes predicted to be 
involved in chemotaxis. The role of chemotaxis in 
OHRB is currently understudied. Chemotactic be-
havior towards metals has been described for 
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Geobacter, some members of this genus have been 
shown to be OHRB. Chemotactic behavior towards 
organohalides has, however, not been described 
for Geobacter spp [59-61]. 

Conclusion 
The presence of an unexpectedly large number of 
putative RDH encoding genes suggests a far larger 
potential for use in bioremediation than previous-
ly anticipated, especially if Dehalobacter restrictus 
strain PER-K23 is attracted by organohalides in a 
chemotactic manner. The complete genome se-
quence of Dehalobacter restrictus strain PER-K23, 

the type strain of the genus Dehalobacter, repre-
sents a significant leap towards understanding the 
physiology, ecology and evolution of this special-
ized organohalide respiring group of bacteria. 
Current work focuses on obtaining a deeper un-
derstanding of the expression and regulation of 
the RDH genes, and thereby expanding the known 
organohalide substrate range of this organism. 
Shot-gun proteome analysis will aid in decipher-
ing the metabolism of D. restrictus strain PER-K23 
and allow generation of refined genome scale 
metabolic models of these dedicated degraders. 
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